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Real-Time Parameter Estimation in the Frequency Domain
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A method for real-time estimation of parameters in a linear dynamic state-space model was developed and

studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation
error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear
and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to
demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Pa-
rameter estimates converged in less than I cycle of the dominant dynamic mode, using no a priori information, with
control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation
method has low computational requirements and could be implemented aboard an aircraft in real time.
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Nomenclature

= system matrices
= expectation operator

= acceleration due to gravity, ft/s z
= altitude, ft

= imaginary number, _/(- I)
= Mach number

= total number of samples
= measurement noise covariance matrix

= real part
= time

= true airspeed, ft/s

= state, input, and output vectors

= measured output vector at time iAt

= angle of attack, rad
= sideslip angle, rad
= aileron, rudder deflections, rad

= elevator, stabilator deflections, rad
= Kronecker delta

= p-dimensional parameter vector
= discrete measurement noise vector

= variance

= angular frequency, rad/s

Subscripts

i

0

= value at time iAt
= trim or initial value

Superscripts

T

1

-I

= transpose

= complex conjugate transpose
= discrete Fourier transform

= estimate

= matrix inverse

Introduction

D EAL-TIME identification of dynamic models is a requirement
INK for indirect adaptive or reconfigurable control. One approach
for satisfying this requirement is to assume the dynamic model has a
linear structure with time-varying parameters to account for changes
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in the flight condition, stores, configuration, remaining fuel, or from

various types of failures, wear, or damage. The task is then to identify

accurate linear model parameter estimates from measured data in
real time, so that the adaptive control logic can make the necessary

changes to the control law to achieve stability and performance

goals.
Two main problems plague accurate real-time parameter estima-

tion: noise and data information content. It is difficult to design a

parameter estimation technique that is insensitive to noise but still

responds rapidly to sudden changes in the system dynamics, mainly

because it takes a fairly long data record to distinguish noise from a

sudden change in the dynamics. This problem can be handled in the
time domain using recursive least squares and a forgetting factor, 2

or by using sequential batch least squares with short data records

and including various constraints in the parameter estimation cost
function, s'4 If an extended Kalman filtering approach s-8 is used,

discriminating signal from noise is implemented through weighting

matrices that represent assumed measurement and process noise co-

variances. For all of these time-domain methods, some adjustment

of one or more tuning parameters must be done in simulation. In ad-
dition, the standard errors for the model parameter estimates, which

are important both for failure detection and adaptive or reconfig-

urable control, cannot be accurately and reliably computed using

recursive or sequential batch time-domain methods.

In the context of airplane flight, lack of information content in

the data can be problematic because there are frequently extended
periods where the control and state variables are fairly constant.

Signal levels are at or below the (relatively constant) noise level. In

this circumstance, a time-domain regression method will give very

inaccurate parameter estimates unless the estimation is regularized

by including a term in the cost function that penalizes movement of

the parameters away from some a priori known values (lbr example,

values from wi nd-tunnel tests) and/or a term that penalizes ti me vari-

ation of the parameter estimates. 4 Tuning parameters are required

for this approach because the magnitude of the penalty term(s) must

be balanced properly relative to the least-squares part of the cost

function used for parameter estimation based on measured data.

Another problem that falls in the category of poor data informa-
tion content is data collinearity due to the control system? Many
control laws move more than one control surface at the same time or

move control surfaces in proportion to state variables with a small

time delay. When states and controls are nearly proportional to one

another, it is impossible to identify individual stability and control
derivatives from the measured data alone.

There are many parameter estimation methods, but the require-

ment of being simple enough to be implemented in real time aboard
the aircraft narrows the field. In particular, any method that iterates
through the data must be eliminated. The current work is an inves-

tigation of a single-step frequency-domain method lbr the real-time

parameter estimation task and an evaluation of its suitability lbr

aircraft problems. This real-time parameter estimation method was
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first proposed as a component of a technique lbr in-flight system
identification, to In the present work, the real-time parameter estima-

tion method is developed further and applied to realistic simulation

and flight-test data.

The next section gives the problem statement and outlines the

necessary theory. Following this, the real-time parameter estima-

tion method is applied to a simulation example, where a linear truth
model is used with outputs corrupted by noise similar to that seen in

flight and by noise that is worse than usual. The application is iden-

tifying an accurate model for the longitudinal rigid-body dynamics

of a conventional fighter. The real-time parameter estimation pro-
cedure is further demonstrated with a longitudinal example using

flight-test data and a nonlinear simulation example, where both lon-

gitudinal and lateralldirectional parameters are estimated.

Theoretical Development

Airplane dynamics can be described by the following linear model
equations_ :

Jr(t) = Ax(t) + Bu(t) (1)

x(0) = x0 (2)

y(t) = Cx(t) + Du(t) (3)

Zi=Yi+Vi i= 1,2 .... ,N (4)

Matrices A, B, C, and D in Eqs. (1) and (3) contain stability and

control derivatives that are assumed as constant model parameters
to be estimated from flight data. Repeating the parameter estimation

at short intervals produces piecewise constant estimates for time-

varying model parameters in the linear model structure. The input
quantities are control surface deflections, _ or 6,, 3,, and 5r, with

the states selected from air data, Vt, or, and/6; body axis angular
velocities, p, q, and r; and Euler angles, q_, 0, and ¢. Output quan-

tities can include the states and translational accelerations, ax, a),,
and a:.

Equation Error in the Frequency, Domain
The finttc Fourier translorm of a signal x (t) is dclined by

fo •._,(o_) =-- x(t)e J_°rdt (5)

which can be appro×imated b),

N- l

2(to) _ At _ ri e -jo_r' (6)
1

i-0

Subscript i indicates the variable value at time iAt, and At is the

sampling interval. The summaUon m Eq. (6) is delincd as the discrete

Fourier transform,

N- I

X (w) = E xi e -j'°ti (7)
i=0

so that

2(w) _ X_to)At (8)

Some fairly straightforwmd correction¢ 2 can be made _o FN. (8)

to remove the inaccuracy resulting from Eq. (8) being a simple Euler

approximation to the finite Fourier transform of Eq. (5). However,

if the sampling rate is much higher than the frequencies of interest
(as is true in this case), then the corrections are small and can be

safely ignored.
Applying the Fourier transform to Eqs. (I) and (3) gives

jw2(to) = AYe(to) + Bfi(o,) (9)

._(W) = Cx(to) + Dfi[to) (10)

When the states, outputs, and mputs are measured, individual

state or output equations from vector Eqs. (9) or t 10) can be used m

an equation error formulation to estimate the stability and control
derivatives contained in matrices A, B, C, and D.

For the kth state equation of vector Eq. (9), the cost function is

1 _-_[jw_r:_(n)_A_2(n)_B_fi(n)l z (11)Jk =
n=l

where A,_ and Bk are the kth rows of matrices A and B, respectively,

and 21 (n) is the kth element of vector 2 for frequency w,,. Symbols
2(n) and fi(n) denote the Fourier transform of the state and control

vectors for frequency to,,. There are m terms in the summation, corre-

sponding tom frequencies of interest, and each transformed variable

depends on frequency. Similar cost expressions can be written for

individual output equations from vector Eq. (10).

Denoting the vector of unknown model parameters m A_ and B_

by 0, the problem can be formulated as a standard least-squares

regression problem with complex data.

where

Y = XO + _. (12)

[ jw,_t,(1)

jo_ _ (2)

Y_

Ljtom 2k (m)

(13)

S_2_

i:r (1) fir(I)

xr(2), fir (2)

L il (m) fir(m)

(14)

and s represents the complex equation error in the frequency domain.

The least-squares cost function is

J = ½(Y -- XO)*(Y - XO) (15)

which is identical to the cost in Eq. (1 I). The parameter vector

estimate that minimizes this cost function is computed from j3

0=[Re(X*X)] _Re(XtY)

The estimated parameter covariance matrix is

coy(O) - E{((_ - 0)(0 - O) r} = _2IRe(XtX)]-_

(16)

(17)

where the equation error variance ¢r2 can be estimated from the
residuals,

6z = [l/(m - P)I[(Y - XO)t(Y - XO)I (18)

and p is the number of elements in parameter vector O. Parameter

standard errors are computed as the square root of the diagonal
elements of the cov(0) matrix from Eq (17) using 62 from Eq (18).

Recursive Fourier Transform

For a given frequency to, the discrete Fourier transform in Eq. (7)
at sample timc i is related to the discrete Fourier transform at time
i-lby

Xi(o)) = Xi _ i(w) + xi exp(--jwiAt) (19)

where

exp(-jwiAt) = exp(-jwAt) expI-jto(i - I)At] (20)

The quantity cxp(-jwAt) is constant for a given frequency and

constant sampling interval. It follows that the d_screte Fourier trans-

form can be computed for a given frequency at each time step using

one addition in Eq (19) and two muhiplications: one in Eq. t20)

using Ihe stored constant exp(-jwAt/ for frequency to, and one
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in Eq. (19) There is no need to store the time-domain data in

memory when computing the discrete Fourier transform in this way

because each sampled data point is processed immediately. Time-
domain data from all preceding maneuvers can be used in all subse-

quent analysis by simply continuing the recursive calculation of the
Fourier transform. In this sense, the recursive Fourier translorm acts

as memory for the infl3rmation in the data. More data from more

maneuvers improves thc quality of the data in the frequency domain

without increasing memory requirements to store it. In addition, the

Fourier transform is available at any time iAt. The approximation

to the finite Fourier transtbrm is completed using Eq. (8).

Rigid-body dynamics of piloted aircraft lie in the rather narrow

frequency band ot" approximately 0.01-1.5 Hz. Therefore, it is pos-
siblc to sele=t closely spaced fixed frequencies for the Fourier trans-

lorm and the subsequent data analysis. Excluding zero frequency
removes trim values and measurement biases, and so it is not nec-

essary to estimate bias parameters. Using a limited frequency band

tor the Fourier transformation conlines the data analysis to the fre-

quency band where the s).stem dynamics reside and automatically

lihcr_ v, ideband measurement noise or structural response outside

the frequent3 band of interest.
For ail of the examples studied in this work, frequency spac-

ing of 0.04 Hz on the interval [0 1-1.5] Hz was found to be ad-

equate, _iving 36 evenly spaced frequencies for each transformed

time-domain signal Finer frcquci_.cy spacing requires slightly more

computations, but was found to have litttc effect on the example re-

suits. When the frequency spacing is very coarse, there is a danger

of omiuing important frequency components, and this can lead to

inaccurate parameter estimates. In general, a good rule of thumb

is to u_c fiequencies evenly spaced at 0.04 Hz over the bandwidth

for the dynamic system. For good results, the bandwidth should be
limited t_ the frequency range where the signal components in the

frequency domain are at least twice thc amplitude of the wideband

noise ievel in the frequency domain. However, the algorithm is ro-

bust relative to these design choices, so that the selections to be
made ale not difficult.

For airplane dynamic modeling, tlae numbcr ot time-domain sig-

nals I,_ I_c transformed is usually low (nine or less, more if there

arc many control surfaces!, so that this approach requires a small

amount of computel memoi-y. Because the data analysis is done in

the frequency domain, the memory required is fixed and independent
of the time length of the flight maneuvers.

The Jecursive Fourier transform update need not be done tot

every sampled time lx_int. Skipping some time points effectively

decimates thc d_,_taprior to Fourier translbrmation. This saves com-

putation and doe_ not adversely impact the frequency-domain data

because the Nyquist frequency (equal to one-half the sampling fie-

qt,ency', is asaally much higher than the relatively low frequencies
beillg used in the recursive Fourier translorm.

Examples

For hmgitudinal aircraft short-period dynamics, the state vector

x and input vector u in Eq (1) are defined by

X = lot q]r U = 18_1 (21)

System matrices containing the model parameters are

A = M_, Mq M (22)

This modct assumes d, effects can be subsumed into the Z,'j and

Mq derivatives. Parameter Z_ includes the inertial term, that is,

Zq = 1 + Zq. in this and all of the other examples, state equations
were used tor the equauon error parameter estimation.

In the first example, a perturbation elevator input was applied to a
known linear model to produce simulated state and output responses.

Figure 1 shows the elevator input &_. The first 8 s of the elevator
input were taken from measured flight test data lbr a longitudinal

tracking task. Constant elevator deflection is held for the final 7 s,
to simulate low data inlbrmation content. The simulated aircraft

is a conventional F-16 (Refs. 11 and 14) with lbrward c.g. position

_,0.2_) in straight and ievel trimmed flight at 10,000 ft, 7-deg angle of

attack, and Mach 0.37. The simulated outputs were corrupted with

20% Gaussian random white noise. This made the signal-to-noise

ratio 5-to- 1 for each simulated output measurement. Figure 2 shows

the simulated measured perturbation angle of attack o_ and pitch rate

q. The elevator input was assumed to be measured without noise,

which is a close approximation to reality. Model parameter values

used to generate the simulated test data, called true values, are given
in column 2 of Table I. Parameter estimation was done in real time

using equation error in the frequency domain applied to the two

state equations, with the Fourier transform computed recursively, as

described earlier. All angular quantities were expressed in radians

for the data analysis, but were plotted in degrees. Angular rates were

expressed in radians per second for the data analysis and plotted in

degrees per second.

Figure 3 shows a time history of M,, model parameter esti-
mates based on the simulated noisy data only. Plots lor the other

model parameters were similar. The model parameter estimates and

Table 1 F-16 linear simulation results, 0¢0 = 7 deg,
h0 = 10,000 ft, M0 = 0.37

20% noise estimate, 50% noise estimate,

Parameter True value (standard errort (standard error)

Z,_ -0.600 -0624 -0.602
(0.047) i0.132)

Z[t 0.950 0.960 0.986
(0.016) (0.044)

Z,_,, -0.115 -0.104 -0.134
(0.017) (0.049)

M_, -4.300 -4.197 -4.021
(0.136) (0.354)

Mq - 1.200 - 1.238 - 1.200
(0.045) (0.119)

M,s, -5.157 -5.157 -5.246
(0.048) (0.130)

(deg)

(deg)

-2

0 10 15

Time (s)

Fig. 1 Elevator input.
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Fig. 2 Simulated measured outputs, 20% noise.
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Parameter estimation, 20% noise.

O_

(deg)

1.5

1

0.5

0

-0.5

-1

-1.5

-2

J . ' I i , _ _--i , ,_--

: i

5 10 15

4 i i i i i i i- i _ i _

(dps)

-2

-4 ........... : ....

-6- ' _ _ i L__U__I__L., _L_
0 5 10 1

Time (s)

Fig. 4 Simulated measured output, 50% noise.

standard errors were computed once a second using Eqs. ( 16-18)

with frequency-donrain data from the recursive Fourier tran.qotn/in

Eqs. (19) and (20). This update rate for the parameter estunation was
used throughout the examples, but was chosen a_bitrarily. Parameter

estimation updates can be done at a faster or slower rate, w ith the up-

per limit delined by the rate used in the recursive Fourier translorm.

The algorithm required no starting values for the parameters, and

the estimates were not regularized in any way with a pritnl values

or constraints on temporal changes in the parameter estimates. The

first parameter estimates arc shov, n at 2 s, because the parameter

estimates after 1 s were poor with very large standard errors, due
to the lack of information content in the data during the lirst sec-

ond of the maneuver. Initial parameter estimate accuracy and speed

of convergence could be improved using a priori information, but

this was avoided so that the performance of the real-time parameter

estimation algorithm alone could be studied.

Figure 3 shows that the parameter estimates converge to the truc
value. The calculated standard errors are representative of the es-

timated parameter accuracy throughout the maneuver and do not
suffer from the covariance wind-up problem characteristic of recur-

sive time-domain methods. Column 3 of Table 1contains parameter

estimates with corresponding standard errors in parentheses. These
results are for the end of the 15-s maneuver. Every parameter esti-

mate is within 4-1 standard error of the true value, indicating that

the parameter estimation is accurate and that the estimated standard

errors properly represent the true accuracy of the parameter esti-
mates. The calculated standard errors accurately convey information

on the quality of the parameter estimates throughout the maneuver
and do not become smaller with increasing maneuver time when

there is no information in the data.

Figure 4 shows the same simulated model outputs using the same

input to the same model, but with the added Gaussian random white
noise level raised from 20% to 50%, reducing the signal-to-noise

ratio to 2-to-I. In addition, two simulated data dropouts with values

of - I00 were added to the simulated pitch rate output. Plots in Fig. 5

^

z
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o

-o.5
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.1.5

-2
o

.... !' '1 TrueValue L

t ..... i..........i
........ i .... i

5 10 15

^
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5e

-5

-6

-7

-8

-9
0 5 10 15

^
M

t/

2-_--_-_-,,, ,, .... -:-
1 _ ...... : - +-o .......... :.......... i.......... -

-1 +-] + ..i ...... i ..... --
-2 ....... !+.. .....
.a ...... : ...... i........

0 5 10 15

Time (s)

Fig. 5 Parameter estimation, 50% noise.

show that the parameter estimates in this case again converge to the
true values, although the standard error values are generally higher,

due to the increased noise level. Plots for the model parameters not

shown were similar. The convmgence rate of the parameter esti-
mates to the true values was similar to the lower noise case, requir-

ing approximately 4 s of data. This corresponds to approximately

1.4 periods of the short-period natural frequency for the simulation

model. Considering that no substantial information is contained in
the data for the Iirst 2 s, this is an excellent result. Discounting the

lirst 2 s, the parameters were accurately estimated from approxi-

mately 2 s of data, corresponding to 0.7 cycles of the short-period

mode. This may not be fast enough lor effective use in an adaptive

or reconfigurable control scheme, in v,,hich case some mechanism

for augmenting the data information, such as a priori parameter es-

timates or auxiliary signal injection on the control surfaces, will be

required to reduce the convergence time. Still, considering that algo-

rithm used only simulated measured data frorn an ordinary piloted
maneuver, the results show a fast and accurate convergence for the

parameter estimates.
The real-time parameter estimation algorithm is robust to mea-

surement noise levels and infrequent data dropouts because of the

automatic liltering inherent in using a limited bandwidth for the
recursive Fourier transfl)rm. In effect, the data dropouts look like

high-frequency noise. Column 4 of Table 1 gives the parameter es-
timates and standard errors for the 50% noise case at the end of

the 15-s maneuver. As before, every parameter estimate is within

+ l standard error of the true value, indicating that the parameter
estimates and standard errors are accurate. The algorithm gave good

results for even higher noise levels, with the upper limit noise level

corresponding to a signal-to-noise ratio around 0.5. As noise level in-

creased further, parameter estimate accuracy gradually deteriorated.
The linear simulation and the real-time data analysis were pro-

grammed and run m MATLAB ® 5.3 (Ref. 15). Sampling rate for the
data was 40 Ha, and the recursive Fourier transform updates were

done at 40 Hz The real-time estimation algorithm ran roughly 10

times faster than real time (1.5 s for a 15-s maneuver) on a Gate-

way 450-MHz E-4200 serial processor, running Microsoft Windows
NT 4.0.
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The next example used real flight-test data from the F-18 High

Alpha Research Vehicle (HARV) to demonstrate the real-time pa-
rameter estimation method. Figure 6 shows the measured stabitator

deflection for this 14-s maneuver. Measured outputs are shown in

Fig. 7. The maneuver was a sequence of doublets implemented by

the pilot from a steady trim condition at 20-deg angle of attack,

24,100-ft altitude, and Mach 0.34. Parameter estimates are plotted
as a function of time in Fig. 8, along with dashed lines indicat-

F-18 HARV Maneuver 153B

l

oiliii-> ::i
-3

(deg) +4

-5
+6 .-

0 5 10 15

Time (s)

Filz. 6 Stabilator input.

F-18 HARV Maneuver 153B

(deg) 20

18

16

14r t _L ..... j
0 5 10 15

4--r---_-ff-F_ _ _ r T-_

(dps)q 1 _i-4-3"_-10,_1 .................

0 5 10 15

Time (s)

Fig. 7 Measured outputs.

ing the -t-26- error bounds. Parameter estimates from standard batch

time-domain output error parameter estimation m are plotted as solid

lines for comparison. The real-time parameter estimation algorithm

produced parameter estimates and standard errors that were in agree-
ment with the batch time-domain estimates after about 5 s. of which

1.5 s was steady trim with no information in the data. One cycle

of the short-period mode using the batch time-domain parameter
estimates was 7.5 s. Table 2 contains results at the end of the 14-s

maneuver from batch time-domain and real-time frequency-domain
parameter estimations.

As in the simulated data cases, the standard errors for the pa-

rameter estimates computed by the real-time parameter estimation

algorithm were consistent with the accuracy of the parameter esti-
mates throughout the maneuver. Specifically, the error bounds were

large at the beginning of the maneuver and smaller as more informa-

tion was obtained from the data. Except for a few instances that are

to be expected because of statistical variation, the standard errors

were representative of the accuracy of the estimated parameters.
Sampling rate tbr the flight-test data was 50 Hz, and the recursive

Fourier translbrm updates were done at 25 Itz. Thc same implemen-
tation and computer were used as before. In this case. the real-time

parameter estimation algorithm ran roughly 14 times faster than real

time (I s for a 14-s maneuver) because of the lower rate used for the
recursive F'ourim translorm.

In the final example, control surface inputs measured in llight

during a piloted longitudinal/lateral tracking task were applied to
a uoulmear F-16 simulation I_ _4 with forward e.g. position (0.2_).

Figurc 9 shows the control surface inputs. The maneuver '_as ini-

tiated from a steady trim condition at IO-deg angle of attack.

IO,O{YO-ftaltitude, and Math 0.32. Simulaled output data from the

nonlinear simulation was corrupted with 20q_ Gaussian white noise.

The sinutlated noisy outputs are plotted in Fig. 10. In this caqe,

lateral/directional linear model paranmters were estimated in addi-

tion to tiae longitudinal model parameters from Eqs. (21) and (22).

Table 2 FI8 IIARV flight-test results, t*0 = 20 deg,
ho = 24,100 ft, Me = 0.34

Batch rune domain Rccmsivc frequency-domain

Parameter estimate (standard error) estimate (standard crier)

z,, -0.218 (0040) - 0.209 (0.084)

z[t 1.047 (0.036) 1.074 (0.052)
z,_ -0.0_7 (0 046) -0.041 (o.oso)

Mo -0.649 (0.044) -0.509 tO. 174)
Mq -0.0(;3 (0.032) 0.177 to IC,7)
M+, -1.257 (0.063) -1.41510 105)

F- 18 HARV Maneuver 153B

4 |'" " 95% Oonfiderx;e Limil (2_)|

2 / ',. : ..... [.....

0 -- ...... ; -: ..... -. -_: .......

. -o o _ _ ,:,--.. ..

0!..01 o_ i: ....... 7i ....... !

F},, 4

-+"L-.... +: +N
-4 +_, + t ..... i _±_A

0 5 10 15

Time (s)

5 I .... I .... T_ _ _:7 ...... +

-)o;-- •,'....... ) ......... : ....... J.+i., :..... i ...... +.....

O- . t ,'.'_ ............ :
[. ,:-4 Y->_,o ,v._ ,, ..... _ :

- F +,': ......... : ........
v -2L . 9. ;..,' .......... ;

' , --

-4 i + = l ; +_ .

-I , .' - ::': ..........! .... . ._;

-2 .... <J ;'_- ::: ". ..':.77-. . ": "

3 ', ] .... L......... i
-3.5 - - _." : ...... : . ]

0 5 10 15
Time (s)

Fig. 8 Parameter estimation.
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Fig. 9 Tracking inputs,
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For the l ateral/di rectional aircraft dynamics, the state vector x and
input vector u in Eq (I) are detined by

x = [,6 p r Ol r u = [G &IT (23)

System matrices containing the model parameters are

A = N_ Nv N_ (24)

0 I tan 0

I O Y_' 1

B = L_.
L &

(25)

o"o,
Figure 11 shows time histories of selected longitudinal and lat-

eral/directional model parameter estimates, with dashed lines indi-

cating the :k26 error bounds. Comparison values for the stability

and control derivatives (plotted as solid lines) were calculated from

the nonlinear simulation using central finite differences with a 1%,

perturbation size. Plots for the model parameters not shown were

similar. As in the other examples, the performance of the real-time

estimation algorithm was excellent, in spite of a relatively short

( I0-s) maneuver and low information content longitudinally. Param-

eter estimates converged to the finite difference values with appro-

priate standard error estimates. Cycle times for the short-period and

Dutch roll modes, based on the finite difference parameter values,

were 3.8 and 2.4 s, respectively. The real-time parameter estimation

algorithm required 4 s to converge to the finite difference values for

the model parameters using the tracking inputs measured in flight

and plotted in Fig. 9.

The sampling rate for the data was 80 Hz, and the recursive Fourier

translbrm updates were done at 40 Hz. For the same implementa-

tion and computer as before, the real-time estimation algorithm for

the longitudinal and lateral/directional models together ran roughly

eight times faster than real time (I.2 s for a 10-s maneuvcr).

Conclusions

A technique was developed for estimating linear model parame-

ters in real time using an equation error formulation in the frequency

domain with a recursive Fourier transform Simulation and flight-

test examples demonstrated that the method gives accurate real-time

estimates or model parameters and standard errors The examples

also showed that the advantages of this approach include automatic
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noisefiltering,robustnesstohighnoiselevelsanddatadropouts,
lixedmemoryrequirementsregardlessofthetimerecordlength,no
biasparameterstoestimate,andgoodperformanceforlowinfor-
mationcontentinthedata.Allofthesefavorablecharacteristics,as
wellaslowcomputationalrequirements,followfromanalyzingthe
datainthefrequencydomainwitharecursiveFouriertransforma-
tionusingfixeddiscretefrequencieswithinthefrequencyrangefor
thedynamicmotionofinterest.

Thepractical,applicability of the method was demonstrated us-

ing a flight-test data example and a nonlinear simulation exam-

ple using real flight-test tracking inputs implemented by the pi-

lot. Data information requirements for good parameter estimates

were found to be low enough that they could be satisfied using

ordinary pilot inputs measured in flight. The algorithm exhibited

rapid convergence to accurate parameter values with standard er-

rors that properly represented the accuracy of the parameter esti-

mates. Typical convergence times were less than 1 period of the

dominant dynamic mode. No starting values were required for the

parameter estimates, no tuning parameters had to be adjusted, and

there was no temporal or spatial regularization during the parame-
ter estimation. Parameter estimates and standard errors were based

on measured data alone. The procedure was shown to have rea-

sonable computational requirements and ran much faster than real

time, even when implemented in a high-level language such as
MATLAB ®.

The technique could be used for dimensional or nondimensional

parameter estimation and could also be used with general nonlinear

models, as long as the model is linear in the parameters. Previous

work l° has outlined how the technique could be used tbr real-time

aerodynamic parameter estimation and flight envelope expansion.

All states and inputs must be measured, but this should not be a

problem in modern aircraft with continuous automatic feedback
control, for which the method is intended.

The real-time parameter estimation technique studied in this work

represents a fundamental building block in fulfilling the require-

ments for adaptivc or reconfigurable control. However, each exam-

ple case included was for a specific flight condition and aircraft

configuration. Future developments must locus on tracking rapid

time-varying linear model parameters resulting from changes in the

flight condition, stores, configuration, remaining fuel, or from var-

ious types of failures, wear, or damage, tn addition, there must be

some work done to address the question of excitation input design

when insufficient information content in the data precludes accurate

parameter estimates.
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